Я все равно Вас достану
Вот вычленил. Как Вы полагаете если из этого набрать курс по обработки информации в рамках напрвалениея Информационные системы и технологии, пойдет?
Технологии анализа данных - Современные подходы к анализу данных, Базовая термино-логия анализа данных, понятие модели и моделирования, Последовательность шагов по ана-лизу данных, Машинное обучение и классы задач Data Mining, Классификация программ-ных продуктов для создания аналитических решений, Характеристики аналитических плат-форм, Языки визуального моделирования в аналитических платформах
Консолидация данных - Основные задачи консолидации данных, Обобщенная схема про-цесса консолидации, Предпосылки появления ХД, Основные требования к ХД, Задачи, решаемые ХД, Детализированные и агрегированные данные, метаданные, Много-мерное представление данных и многомерный куб, MOLAP, Измерения и факты; операции с многомерным кубом, ROLAP, схемы "звезда" и снежинка", HOLAP, преимущества и недостатки гибридной архитектуры ХД, Витрины данных, Концепция виртуальных хранилищ данных, Процесс ETL, его основные цели и задачи, Выбор используемых источников данных, Организация процесса извлечения данных, Уровни очистки данных, Классификация проблем в "грязных" данных, Преобразование структур данных: агрегирование, перевод значений и пр., Организация процесса загрузки в ХД, Многопоточная загрузка и постзагрузочные операции, Преимущества и недостатки отказа от создания ХД, Особенности загрузки из локальных источников данных, Необходимость обогащения данных и способы обогащения
Трансформация данных - Что такое трансформация, Цели трансформации и ее роль в про-цессе ETL, Основные методы трансформации, Трансформация временных рядов: скользящее окно, интервал и горизонт прогноза, глубина погружения, Преобразование даты и времени, Группировка и разгруппировка данных, Объединение данных, Внутреннее и внешнее соединение, Цели квантования, Выбор числа интервалов квантования, Методы квантования, Основные методы нормализации, Нормализация с помощью поэлементных преобразований, Кодирование категориальных данных
Визуализация данных - Цели и задачи визуализации данных, Группы методов визуализа-ции, Общие визуализаторы: графики, диаграммы, гистограммы, статистика, OLAP-анализ, Манипуляции с OLAP-кубами, Матрицы классификации, Диаграммы рассеяния, Ретропрог-ноз, Коэффициенты регрессии, Визуализация контроля обучения моделей, Древовидные ви-зуализаторы, Визуализаторы связей, Двумерные карты
Очистка и предобработка данных - Концепция управления качеством данных, Уровни ка-чества данных, Оценка пригодности данных к анализу, Оценка качества данных по их про-исхождению, Что такое профайлинг данных, Визуальная оценка качества данных, Выявление трудно формализуемых ошибок, Предобработка данных и ее отличие от очистки, Почему "грязные" данные доходят до аналитической системы, Типичный набор инструментов предобработки в аналитическом приложении, Фильтрация данных, Обобщенная модель дубликатов и противоречий, Влияние дубликатов и противоречий на эффективность анализа, Обработка дубликатов и противоречий, Виды аномалий, Обнаружение аномальных значений статистическими методами, Обнаружение аномальных значений на основе меры расстояний, Методы корректировки аномальных значений, Происхождение пропусков в данных, Методы восстановления пропущенных значений, Постановка задачи сокращения размерности, Требования к алгоритмам снижения размерности данных, Когда необходимо сокращение числа признаков, Алгоритмы и методы сокращения числа признаков, Отбор признаков на основе статистических показателей, Сокращение признаков на основе информационных оценок, Метод главных компонент, Сокращение числа значений признака, Уменьшение числа наблюдений, Сущность, цели и задачи сэмплинга, Методы сэмплинга
Data Mining – Задача ассоциации, Кластеризация, Классификация и регрессия, Статические методы, Машинное обучение