
in

al-
Model Driven Architecture
(MDA)

Document number ormsc/2001-07-01

Architecture Board ORMSC1

July 9, 2001

1.Edited by Joaquin Miller and Jishnu Mukerji. The following have made significant contribution to this document
course of its development: Carol Burt, Desmond DSouza, Keith Duddy, William El Kaim, William Frank, David
Frankel, Sridhar Iyengar, Joaquin Miller, Jeff Mischkinsky, Jishnu Mukerji, Jon Siegel, Richard Soley, Sandy Tynd
Biscoe, Axel Uhl, Andrew Watson and Bryan Wood.
ying
™

ent

G

G
or use
tion
ions
nd

ost

tion
1 Why the MDA

1.1 MDA and the Mission of the Object Management Group

The OMG's mission is to help computer users solve integration problems by suppl
open, vendor-neutral interoperability specifications. The Model Driven Architecture
(MDA™) is OMG's next step in solving integration problems.

1.2 The OMG’s Specification History

The work of the OMG has been driven since 1990 by a clear architectural statem
that has not changed much since it was first designed. The Object Management
Architecture (OMA) provided the vision and roadmap for the problem that the OM
has always addressed: the problem of integration. Having created the CORBA
(Common Object Request Broker Architecture) interoperability standards, the OM
has in the past used them almost exclusively as the basis for creating standards f
in particular application domains. However, since 1997 the scope of the organiza
has broadened significantly. In 1997 the OMG issued several important specificat
that are not CORBA based, including the Unified Modeling Language™ (UML™) a
the Meta Object Facility™ (MOF™), and later XML Metadata interchange (XMI™)
and the Common Warehouse Metamodel (CWM™).

Vendors have implemented these specifications widely over the past ten years, m
notably OMG's flagship CORBA specification. When every system component
supports an OMG-standardized interface, the task of creating a multi-vendor solu
(as most are) is greatly eased. Organizations polled in a recent analyst survey
confirmed this by ranking CORBA compliance as the most important consideration in
ormsc/2001-07-01 Model Driven Architecture 1

July 9, 2001 Draft

,

h its
the
and
tes

et of
ades,

eb-
rface
e to
ying
 the

sion

o

rds
 helps
that
d

way

and

ely
side
he
ility

choosing middleware for application integration2. More recent OMG interoperability
specifications like Common Warehouse Metamodel are expected, in the long term
have equal impact.

1.3 The Emergence of New Kinds of Standards

When the OMG was issuing only CORBA-oriented standards, the manner in whic
various standards fit together was quite well understood, and clearly mapped by
OMA. The emergence of new kinds of standards that are foundational in nature,
their potential use in defining other standards and fitting them together, necessita
that we expand our vision of the OMG's architecture.

There are limits to the interoperability that can be achieved by creating a single s
standard programming interfaces. Computer systems have lives measured in dec
and not all ancient systems written in obsolete programming languages can be
modified to support standards. Furthermore, the increasing need to incorporate W
based front ends and link to business partners who may be using proprietary inte
sets can force integrators back to the low-productivity activities of writing glue cod
hold multiple components together. When these systems in their turn need modif
and integrating with next year's hot new technology (and they all will) the result is
kind of maintenance nightmare all computer users fear.

1.4 The Evolution to Model Driven Architecture

This paper is a statement by the OMG Architecture Board (AB) of the expanded vi
necessary to support interoperability with specifications that address integration
through the entire systems life cycle: from business modeling to system design, t
component construction, to assembly, integration, deployment, management, and
evolution. This vision is embodied in the OMG’s Model Driven Architecture™
(MDA™). It describes how the MDA defines the relationships among OMG standa
and how they can be used today in a coordinated fashion, and how the approach
in the creation, maintenance and evolution of standards. It is important to realize
the MDA is a proposal to expand and not replace the OMA, to provide a roadmap an
vision that will include and integrate all of the work done to date, and to point the
to future integration standards.

OMG has already specified integration with external specifications (such as XML)
proprietary interface sets (such as Microsoft's DCOM). The MDA approach
incorporates this existing work and promises more support for rapidly and effectiv
creating new specifications that integrate multiple interface standards, from both in
and outside the organization. It is an evolutionary step from how OMG works at t
moment, but one that will offer great benefits to those using the OMG interoperab
framework. It will also indirectly help all system integrators.

2.'A surprising 70 percent of respondents cited CORBA compliance as 'important' or 'very important' to
integration, outpacing every other factor in the survey, including core functions such as integration of
legacy applications with distributed systems and corporate intranets.”-- Summary of responses from
547 organizations asked to rate middleware selection criteria in the context of application integration
in 'Middleware: what end users are buying and why” Gartner Group, February 1999
2 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

ance

r

 on
ngs

f
an
ons

fying
g

n
e

r

ll-

 the
anges,

have
1.5 How the MDA Integrates Standards

An important aspect of some of the latest OMG standards is that they greatly adv
the art, science, and scope, of modeling. The combined power of these model-driven
standards forms the basis of a compelling approach to long-lived architectures fo
distributed, component-based systems. This approach broadens considerably the
usability of the standards by:

1. embracing CORBA, J2EE, XML, .NET and other technologies;

2. improving portability of applications by allowing the same model to be realized
multiple platforms through auxiliary mapping standards, or through point mappi
to specific platforms

3. improving integration based on models of relationships across different domain
application, and component interfaces allowing interoperability based on
semantically-rich interrelationships.

2 The Model Driven Architecture

2.1 Introduction

The MDA defines an approach to IT system specification that separates the
specification of system functionality from the specification of the implementation o
that functionality on a specific technology platform. To this end, the MDA defines
architecture for models that provides a set of guidelines for structuring specificati
expressed as models.

The MDA approach and the standards that support it allow the same model speci
system functionality to be realized on multiple platforms through auxiliary mappin
standards, or through point mappings to specific platforms, and allows different
applications to be integrated by explicitly relating their models, enabling integratio
and interoperability and supporting system evolution as platform technologies com
and go.

2.2 Basic concepts

2.2.1 Models

In the MDA, a model is a representation of a part of the function, structure and/o
behavior of a system3.

A specification is said to be formal when it is based on a language that has a we
defined form (“syntax”), meaning (“semantics”), and possibly rules of analysis,
inference, or proof for its constructs. The syntax may be graphical or textual. The
semantics might be defined, more or less formally, in terms of things observed in
world being described (e.g. message sends and replies, object states and state ch
etc.), or by translating higher-level language constructs into other constructs that
a well-defined meaning. The optional rules of inference define what unstated

3. We use system here in the system-theoretic sense to include not only software.
 Model Driven Architecture ormsc/2001-07-01 3

July 9, 2001 Draft

, a
es
 box,

ristic
 that

ms,

del
l.

ed to
ction

of

ferent

ion,

odels
al

e, A
properties you can deduce from the explicit statements in the model. In the MDA
specification that is not formal in this sense, is not a model. Thus a diagram with box
and lines and arrows that does not have behind it a definition of the meaning of a
and the meaning of a line and of an arrow is not a model—it is just an informal
diagram. An MDA model must be paired unambiguously with a definition of the
modeling language syntax and semantics, as provide by the MOF.

Note that under this definition, source code is a model that has the salient characte
that it can be executed by a machine. Similarly, a set of IDL interfaces is a model
can be used with any CORBA implementation and that specifies the signature of
operations and attributes of which the interfaces are composed. A UML-based
specification is a model whose properties can be expressed graphically via diagra
or textually via an XML document.

2.2.2 Abstraction, Refinement and Viewpoint

The term abstraction is used in the MDA in the sense defined in the Reference Mo
of Open Distributed Processing (RM-ODP)4 Part 2: the suppression of irrelevant detai

It is useful to characterize models in terms of the abstraction criteria that were us
determine what is included in the model. A model that is based on specific abstra
criteria is often referred to as a model from the viewpoint defined by those criteria, or
in short as a view of the system.

Another common use of the word abstraction is in the phrase a model at a higher level
of abstraction, which is used to characterize a model in which more of the details
the system are elided as compared to a model at a lower level of abstraction.

Specifically, some pairs of models are in a refinement relationship in which one - the
abstraction - is more abstract than the other - the realization. The refinement relation
is itself described using a model, defining abstraction observations in terms of
realization observations while maintaining certain guarantees of the abstraction. For
example, the realization observations might be SOAP communications and replies,
while the abstraction elides differences of SOAP vs. GIOP.

Note that models that simply describe the system from different viewpoints – of legal
drinking age vs. resident of Maine – cannot necessarily be related by refinement.

Furthermore in common usage, separate viewpoints sometimes corresponds to dif
levels of abstraction such that a larger amount of detail from a viewpoint may be
elided to obtain a model from that viewpoint, or a view, at a higher level of abstract
while little or no detail may be elided to obtain a model or view, at a low level of
abstraction for those pairs of models. It is essential to note, however, that some m
of a system from different viewpoints will not be related by refinement e.g. “of leg
drinking age” vs. “resident of Maine” as views of some person.

While the MDA provides guidelines on the architecture of models, the choice of
viewpoints to be used in a system specification is a modeling choice. For exampl
specific set of five viewpoints is defined in the RM-ODP Part 3.

4. ISO Standard 10746-2
4 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

nt

wer

gly

by
e

ils
ider,
ing
at a
 a
to the

P
 Model Driven Architecture ormsc/2001-07-01 5

2.2.3 “Zooming” in and out

The MDA leverages UML models as abstractions, different viewpoints, and differe
levels of abstraction. In particular, as illustrated in Figure 1, the MDA permits:

Figure 1. “Zooming” in and out

• ”Zooming” out of a model showing a complex network of objects (e.g.
infrastructure objects like stubs, binders, etc.), to get a simplified model with fe
large-grained objects and attributes; and correspondingly zooming in to see those
details.

• ”Zooming” out of a model of a detailed interaction protocol (e.g. a platform-
specific protocol for log-in and authentication) to get a simplified model with a
single more abstract interaction with the same overall effect; and correspondin
zoom in to see those detailed interactions.

MDA permits zooming in to result in multiple alternative models (and vice-versa)
separating the refinement model that relates the detailed and simplified views. Th
MDA needs this flexibility to deal with the modelling of multiple platform specific
implementations of the same system functionality; it is more flexible than the 1-1
mappings sometimes assumed by ”decomposition” and “composition” models, which
are a special case of refinement.

2.2.4 Platform and Implementation Language Environment

In the MDA, the term platform is used to refer to technological and engineering deta
that are irrelevant to the fundamental functionality of a software component. Cons
for example, a formal definition of an operation that transfers funds from a check
account to a savings account. The fundamental functionality of this operation is th
specified amount is subtracted from a designated checking account and added to
designated savings account, with a constraint that the two accounts must belong
same customer. This functionality remains invariant regardless of whether the
operation is performed by a CORBA object, an Enterprise Java Beans, or a SOA
operation5.

(b) Zooming in/out – interactions(a) Zooming in/out – objects

out

in

out

in

out

in

represents an interactionThe symbol
July 9, 2001 Draft

ect

ructs,
ory and
lized
tween
 some

d

a

cture

 a

 that
bes
er.
tract

own

Thus, a platform-independent model is a formal specification of the structure and
function of a system that abstracts away technical detail6. By this definition a SOAP
specification of the funds transfer operation would be platform-specific. A
specification that depends on interfaces to artifacts of CORBA, like the ORB, Obj
Services or GIOP/IIOP would be an example of a platform-specific model.

Note that platforms themselves also have a specification (e.g. of component const
such as facet and receptacles, ports, and connectors, and services, such as direct
transactions); and an implementation (the platform component constructs are rea
by some refinement e.g. receptacles as some IDL interface pattern, connectors be
event sources and sinks as a particular adapter pattern, services implemented in
implementation language). A PSM is expressed in terms of the specification model of
the target platform. CORBA itself is implemented on an infrastructure, which coul
properly be referred to as a implementation language platform. However, to avoid
confusion, we use the term implementation language environment to refer to such
infrastructures in the MDA. Thus, analogous to the dichotomy established for
platforms, CORBA specifications are implementation language environment
independent, whereas artifacts like stubs, skeletons and the ORB implemented in
specific language are implementation language environment specific.

2.3 Models in the MDA

2.3.1 Architecture for MDA Models

The MDA separates certain key models of a systems, and brings a consistent stru
to these models. Figure 2 on page 7 shows that models of different systems are
structured explicitly into Platform Independent Models (PIMs), and Platform Specific
Models (PSMs). How the functionality specified in a PIM is realized is specified in
platform-specific way in the PSM, which is derived from the PIM via some
transformation.

The PIMs provide formal specifications of the structure and function of the system
abstracts away technical details. A Platform Independent Component View descri
computational components and their interactions in a platform-independent mann
These components and interfaces, in turn, are a way of realizing some more abs
information system or application, which itself helps realize a computation-
independent Business Model7 OMG standards are specified in terms of a PIM and,
normally, one or more PSMs, all in UML.

In addition, the MDA defines consistent relationships across these models. As sh
in Figure 2, for a given system there are cross-model refinement correspondences (the
large double-headed arrows in the figures) between business model, platform-

5. In fact, there are many partial specifications of transfer: s1 = move funds; s2 = notify IRS
if > 100K moved; s3 = s1 & s2; s4 = s3 & failure_spec; s5 = CORBA version of s4. Plat-
form independence separates out s5 from the rest.

6.Note that we do not say the platform-independent model. There could be models of a sys-
tem from multiple viewpoints, at multiple levels of abstraction, all of which are platform-
independent e.g. RM-ODP enterprise, computational, and engineering viewpoints.
6 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

o
he

 or

cific

 (c.f.
s the

e
fits:

cific

el
pler,
independent components, and platform-specific components. Similarly, across tw
different systems to be integrated (e.g. in EAI), interactions may be specified at t
platform-specific, platform-independent, and even business model levels of
abstraction.

There could be more and less abstract models within each of the business, PIM,
PSM levels. The PIM (including the Business Model) and the PSM are viewpoint
specifications of the system for the OMG standard. They are closely related to spe
sets of viewpoints defined by the RM-ODP Part 3.

The computation independent business model is one in which the Computational
RM-ODP) details are hidden or as yet undetermined. It is sometimes referred to a
business domain model.

Figure 2. Consistent Model Separations and Relationships in MDA

Abstracting out the fundamental precise structure and behaviour of a system in th
PIM from implementation specific concerns in the PSMs has three important bene

1. It is easier to validate the correctness of the model uncluttered by platform-spe
semantics. For example, PSMs have to use the platform concepts of exception
mechanisms, parameter types (including platform-specific rules about objects
references, value types, semantics of call by value, etc.), and component mod
constructs; the PIM does not need these distinctions and can instead use a sim
more uniform model.

7. This computation-independent description is sometimes referred to as a domain model.
While it need not be explicitly present in a particular usage of the MDA scheme, MDA
accommodates it consistently in the same overall architecture.

Bi l l ingServ ice P rov is ion ing

Computation
independent

Platform
independent

Computa t ion Independen t
Business Mode l

Computa t ion Independen t
Business Mode l

P la t fo rm Spec i f i c P la t fo rm Spec i f i c

P la t fo rm Independent
Component V iew

Pla t fo rm Independent
Component V iew
 Model Driven Architecture ormsc/2001-07-01 7

July 9, 2001 Draft

 to
ther,

s.

or

nual.

iven

oose
as
2. It is easier to produce implementations on different platforms while conforming
the same essential and precise structure and behavior of the system. Even fur
the business model defines business goals and policies in a computation-
independent manner.

3. Integration and interoperability across systems can be defined more clearly in
platform-independent terms, then mapped down to platform specific mechanism

Where appropriate generic mappings or patterns can be shared across multiple
applications, it may be possible to automatically transform a PIM, perhaps after
annotating it with some platform information, to different target PSMs either fully
partially. The optimal transformation depends on QoS and other requirements,
simplified in Figure 3 to a single shared PIM to CORBA generic correspondence
mapping. Figure 3 applies regardless of whether the mapping is automated or ma

Figure 3. Shared Patterns of PIM <-> PSM Mappings

Figure 4 shows the structure, of specifications, realizations, and refinements from
business domain to code, covering any granularity of system, sub-system, etc. A g
“platform” is a large (infrastructure) component with a specification, including
services available to other assembled components. A given usage of MDA may ch
to exploit this to a lesser extent. Recurring patterns occur across all levels, such
between PIM and PSM. These form a important part of the architectural style.

Service Provisioning Billing

Shared Mapping

Platform Independent
Component View

Platform Specific
CORBA

Platform Specific
CORBA

Platform Independent
Component View

Computation Independent
Business Model

Computation Independent
Business Model
8 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

aces,
 of

s the

he
i.e.

ML

ot
Figure 4. Structure of specification, refinement, and design.

2.3.2 Platform Independent Models in UML

UML models are declarative models, as are IDL-based object models, Java interf
and Microsoft IDL interfaces. However, UML models differ from these other kinds
declarative models in some important ways.

First, UML has been defined using core UML modeling concepts and this enhance
power of MDA.

Secondly, UML models can be expressed textually as well as graphically.

Finally, UML models can be semantically much richer than models expressed in t
other declarative model languages mentioned above, which can express syntax (
signature) but very little about constraints on usage and behavior such as:

• Static invariants constraints on combinations of attributes.

• Pairs of pre and post-conditions for specifying operations.

• Whether a single-valued parameter is allowed to be null.

• Whether an operation has side effects.

• Whether subtypes of some supertype are disjoint or form a partition.

• Patterns of specifications, designs and refinements.

Static invariants and pre/post conditions are particularly important features of an
approach to rigorous software engineering called contract based design. UML did not
invent the concept of contract based design, but it has very good support for it. U
defines a formal assertion language called Object Constraint Language (OCL) that
facilitates specification of certain constraints. While contract based design does n

Business Domain Models B1, B2
(describes knowledge about the business
domains, independent of specific software
or business processes that might be used)

Spec of software system S1
(specifiies the software independent
of the various processes it may be
configured for and deployed into,
built using a minimal model of
domain)

Business Process Models
(describes business processes and includes
information models; detailed versions include
how some software system, S1, is used as a
part of some business processes; cannot
violate domain knowledge in B1 and B2)

Design D1 of software system S1
(a design of the software as an
assembly of other software
components C1 and C2)

Spec of C1

Spec of C2
 Model Driven Architecture ormsc/2001-07-01 9

July 9, 2001 Draft

ecise

ects:

xtent
n the

e

for

 to

 is
how

eed
, and
e as
y be

ML

r

 it

ed to
ets,
eliminate the need for informal textual explanations of interface usage, it can
significantly reduce dependence on them. The UML allows formalization of the
vocabulary otherwise left imprecise in interface specifications, as an abstract yet pr
model of the state of the object providing that interface and of any parameters
exchanged.

Some current OMG specifications including UML, MOF and CWM specifications
already use UML and OCL for specifying constraints

Specifying constraints formally rather than in free form text reduces ambiguity in
specifications and thus makes life easier for implementers in three important resp

1. It provides the programmer with more precise instructions, thus lessening the e
to which the programmer has to guess at the designer’s intention or track dow
designer to find out what to do.

2. It decreases the amount of work required to get different implementations of th
same specification working together, or to integrate implementations of two
specifications whose models are unambiguously related.

3. The formal specification provides a foundation for defining conformance tests
different implementations.

A model that specifies interfaces to this much precision is profoundly different in
character from one that does not. The MDA approach allows OMG specifications
rise to this level of rigor.

2.3.3 Platform Specific Models in UML

In section 2.3.1 it is stated that a PSM is expressed in UML, however, since UML
independent of middleware technologies, it is not obvious to the casual observer
to harness this power to express a PSM.

For example, in order to transform a PIM into a CORBA PSM certain decisions n
to be made. Are the UML classes represent CORBA interfaces, valuetypes, structs
unions? If so how does one make it clear that a particular UML class is an interfac
opposed to a valuetype? If not, what do the classes represent and how would the
useful?

Such decisions can be defined by a UML profile, which is a set of extensions to U
using the built-in extension facilities of UML, stereotypes and tagged values.
Stereotypes label a model element to denote that the element has some particula
semantics.

The UML Profile for CORBA, adopted in 2000, specifies how to use UML in a
standard way to define CORBA IDL interfaces, structs, unions, etc. For example,
defines stereotypes named CORBAInterface, CORBAValue, CORBAStruct,
CORBAUnion, etc. that are applied to classes to indicate what the class is suppos
represent. In the graphical UML notation a stereotype is delimited by angle brack
as illustrated in Figure 5.
10 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

e

ing

e
at
.

Figure 5. A Stereotype Indicating that the Class Represents a CORBA Interface

Figure 6 is a fragment of the specification of a CORBA interface that uses the
semantic power of UML to formalize an invariant rule. The invariant rule cannot b
formally specified in IDL, and thus we consider this model to be a semantically
enhanced CORBA specification

.

Figure 6. A Fragment of a Semantically Enhanced CORBA Specification

The model fragment in Figure 6 corresponds to the IDL shown in Figure 7, assum
that UML attributes map directly to exposed attributes in CORBA interfaces.

interface Account {
 attribute short number;
 attribute float balance;
};

Figure 7. IDL--By Nature Semantically Thin

Thus, with the UML Profile for CORBA, CORBA-based specifications can be mad
much more complete than is possible with IDL only. The normative English text th
specifies rules such as the allowable range of the Account number today, will be

<<CORBAInterface>>
AccountManager

create_account(in number : unsigned long);
find_account(in number : unsigned long);

--English
--number must be between 1000
--and 9999

--OCL
inv:

number >= 1000 and
number <= 9999

<<CORBAInterface>>
Account

number : short
balance : float
 Model Driven Architecture ormsc/2001-07-01 11

July 9, 2001 Draft

BA
need
cise
vior

re is
l

g
logies

t
replaced by formal invariant rules expressed in terms of the UML Profile for COR
in the near future. The ORBs of today need only understand the IDL; they do not
to understand the formal specification of behavior and constraints in the more pre
specification any more than they need to understand informal specification of beha
and constraints in English text.

Similarly, UML profiles can be defined for other platforms, providing the essential
tools for constructing PSMs.

The technology is in place to proceed in this direction. The main barrier is that the
a gap in knowledge of how to use the technology, and there is a lack of universa
availability of appropriate tools.

2.3.4 Mappings of Models

Figure 8 below presents a metamodel description of MDA. PIM, PSM and mappin
techniques are based on metamodel expressed preferably with OMG core techno
like MOF, CWM or UML.

Figure 8. MDA Metamodel Description

In MDA, one of the key feature of the whole approach is the notion of mapping. A
mapping is a set of rules and techniques used to modify one model in order to ge
another model. Mappings are used for transforming:

PSM Mapping
techniques

PIM Mapping
Techniques

PSM

1..n1..n

Mapping from PSM to PSM

Infrastruc ture<<depends on>>

PIM

1..n1..n

Mapping from PIM to PSM

Refactoring from PSM to PIM

1..n1..n

Mapping from P IM to PIM

<<independant of>>

UML

MOF
Metamodel

1..n1..n

<<based on>>

1..n1..n
<<are described with>>

1..n1..n

<<are described with>>

1..n1..n

<<based on>>

<<expressed with>>

<<expressed with>>

Other
languages

<<expressed with>>
12 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

r

sign

be
m

.
del

 and
hen
 and

his
d. It
h

f

ion

e
ing
OC

rofile
and
 go
1. PIM to PIM . This transformation is used when models are enhanced, filtered o
specialized during the development lifecycle without needing any platform
dependent information. One of the most obvious mapping is the analysis to de
models transformation. PIM to PIM mappings are generally related to model
refinement.

2. PIM to PSM. This transformation is used when the PIM is sufficiently refined to
projected to the execution infrastructure. The projection is based on the platfor
characteristics. Describing these characteristics should be done using a UML
description (and eventually a profile for describing common platform concepts)
Going from a logical component model to a commercial existing component mo
(like EJB for J2EE platform or CCM for CORBA platform) is a kind of PIM to
PSM mapping.

3. PSM to PSM. This transformation is needed for component realization and
deployment. For example, component packaging is done by selecting services
preparing their configuration. Once packaged, the components delivery could t
be done by specifying initialization data, target machines, container generation
configuration, etc. PSM to PSM mapping are generally related to platform
dependent model refinement.

4. PSM to PIM. This transformation is required for abstracting models of existing
implementations in a particular technology into a platform-independent model. T
procedure often resembles a "mining" process that is hard to be fully automate
may be supported by tools, though. Ideally, the result of this mapping will matc
the corresponding PIM to PSM mapping.

UML profiles have an important role to play in MDA, since MDA leverage usage o
mappings between models. To implement the mapping, one needs to know the
metamodels of the input and output models and their mapping rules. Transformat
rules execution can be done inside UML tools (for example using scripting) or by
external tools (for example, by working on XMI files). We present in Figure 9 on
page 14 an example of PIM to PSM mapping using the OMG profile for Enterpris
Distributed Object Computing (EDOC). A component architecture is described us
the EDOC profile. The EDOC profile specifies also standard mappings between ED
and standard component models, like EJB. The EDOC to EJB mapping is not a p
per se, but could be associated to the profile notion, because you know the input
the output model and metamodel. So specifying standard rules and techniques to
from one model to the other is then possible.
 Model Driven Architecture ormsc/2001-07-01 13

July 9, 2001 Draft

a

wn

haps

 a

ly
ces,
Figure 9. MDA Metamodel Example

2.3.5 Platform Independent and Platform Specific UML Models

There are multiple ways to transform a PIM expressed using UML into a
corresponding PSM expressed using UML

1. A human could study the platform-independent model and manually construct
platform-specific model, perhaps manually constructing the one-of refinement
mapping between the two.

2. A human could study the platform-independent model and utilize models of kno
refinement patterns to reduce the burden in constructing the PSM and the
refinement relation between the two.

3. An algorithm could be applied to the platform-independent model and create a
skeleton of the platform-specific model to be manually enhanced by hand, per
using some of the same refinement patterns in 2.

4. An algorithm could create a complete platform-specific model from a complete
platform-independent model, explicitly or implicitly recording the refinement
relation for use by other automated tools.

Note that the above list does not address the production of executable code from
platform-specific model.

There also are variations in which the platform-specific model is not a semantical
rich UML model but, rather, is expressed via a language such as IDL, Java interfa
XML, etc.

EDOC_EJB_M appi ng_Rul es
<<EDOC>>

My Component
Architecture Model

<<PIM>>
CurrentVersion

<<EDOC>>
<<use>>

My EJB Model
<<PSM>>

<<mapping>>

EJB_20
<<EJB>>

<<use>>

J2EE Platform
<<infrast ructure>>
14 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

. The
n the

ertain

e.

orms

 the
his
n

ces.

e

,

Fully automated transformations are feasible in certain constrained environments
degree to which transformations can be automated is considerably enhanced whe
following conditions are obtained:

• There is no legacy to take into account

• The model that serves as input to the transformation is semantically rich

• The transformation algorithms are of high quality

It is much easier to generate executable code for structural features (attributes, c
associations and similar properties) of a model rather than behavioral features
(operations) because the behavior of property getters and setters are quite simpl

Automation of transformations is more tractable when the transformation is
parameterized, i.e. a human has a pre-defined set of options to select from, to
determine how the transformation is performed. For example, a system that transf
a UML model to an XML DTD could allow some control over how a UML class’s
attributes are transformed, giving a human a chance to choose to put them in an
ATTLIST or to put each attribute in a separate ELEMENT.

Some of these points are illustrated by a CORBA-specific model, corresponding to
fragment of a platform-independent model shown earlier in Figure 10. Note that t
model fragment has been annotated with a stereotype to denote that Account is a
entity as opposed to a process8. The model fragment has also been enhanced to
indicate that the Account number constitutes a unique identifier for Account instan
These annotations are platform-independent, but they can directly help select an
appropriate PSM pattern

.

Figure 10. Platform-Independent Model, Annotated with Stereotypes

Figure 11 shows a CORBA-specific UML model constructed from this fragment. W
are not taking a stand that this is the proper way to construct a CORBA solution from
the platform-independent UML fragment. It is simply an example of how one might do
so either manually or algorithmically. The stereotypes <<BusinessEntity>> and
<<UniqueId>> could themselves indicate the systematic application of this pattern

8.In the field of distributed business component-based software it is now widely understood
that the entity-process distinction is crucial to building scalable systems.

--English
--number must be between 1000
--and 9999

--OCL
inv:

number >= 1000 and
number <= 9999

<<BusinessEntity>>
Account

<<UniqueId>> number : Integer
balance : Float
 Model Driven Architecture ormsc/2001-07-01 15

July 9, 2001 Draft

n

ount
ern
 a
ique
 a

s the
d
e a

es it
t

ence,

when interpreted in the context of the CORBA Profile. Note that
Session:BaseBusinessObject is an element defined in the OMG Task and Sessio
Service. The logic of the construction uses the enhancements to the platform-
independent model that indicate that Account is a business entity and that the Acc
number constitutes an Account’s unique identity. It reflects a commonly used patt
of specifying one interface exposed by entity instances and the other exposed by
manager of the entity instances, including factory finder operations that use the un
identifier as a selector. The entity instance interface has an attribute that provides
reference to the instance manager.

Figure 11. A CORBA-Specific UML Model Derived from the PIM expressed using UML

Figure 12 contains the IDL that expresses the same CORBA-specific solution. Of
course the IDL is semantically thin. Its formal constructs do not and cannot expres
invariant rule about the account number range. Furthermore, the IDL does not an
cannot formally indicate whether a well-formed Account instance is allowed to hav
null manager reference. On the other hand, the CORBA-specific UML model mak
clear, via the multiplicity of 1 on the manager end of the association between Accoun
and AccountInstanceManager, that a well-formed account must have a non-null
manager reference. If the solution designer intended to allow a null manager refer
then the multiplicity would be 0..1 in the CORBA-specific UML model, but the IDL
would be the same as in Figure 12 below.

--E ng lish
--num ber m u st be betw een 100 0
--and 999 9

--O C L
inv :

num ber > = 100 0 an d
num ber < = 999 9

< < C O R B A In terface> >
A ccoun t

n um ber : sh ort
b a lance : f loa t

< < C O R B A In terface> >
S essio n ::B aseB usin essO b jec t

< < C O R B A In terface> >
A ccoun tInstanceM anager

create_ acco un t(in n um b er : unsigned lon g : A cco un t
f in d_accou n t(in nu m ber : u nsig ned long) :) A cco un t

< < C O R B A In terface> >
C osL ifeC y cle ::G enericF acto ry

1 *

+ m anag er
16 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

kages

els
e

large
evel
ion

l
selves

interface AccountInstanceManager : CosLifeCycle::GenericFactory {
Account create_account (in unsigned short number);
Account find_account (in unsigned short number);

};

interface Account : Session::BaseBusinessObject {
attribute AccountInstanceManager manager;
attribute short number;
attribute float balance;

};

Figure 12. IDL Corresponding to the CORBA-Specific UML Model

2.3.6 Packages and Viewpoints

UML provides an important modeling element that is relevant for separating
viewpoints, levels of abstraction, and refinements in the context of MDA − the UML
package, a UML construct for grouping model elements. A package can import other
packages, making elements from the imported package available for its use. Pac
help understand the MDA since the models being interrelated for integration are
typically in different packages.

Models of a system from two different viewpoints unrelated by refinement (or mod
of two distinct interfaces of a component, or models of two different systems to b
integrated) would be defined in two separate packages as in Figure 13(a). The
interrelationships between the two would be defined in a model correspondence (
arrow), defining the integration of those two viewpoints or systems at the current l
of abstraction. Similarly, models of the same system at different levels of abstract
are defined in two packages as in Figure 13(b); the refinement model relating them
would be another model correspondence. Refinement is a relation between mode
elements that can be in separate packages, and not between the packages them

Naturally, the model correspondences could use recurring patterns from a shared
generic model correspondence. Also, since one can “zoom” in and out of any
granularity of object or component; the realization package P6 assembles some
subcomponents by importing their specification packages.

Figure 13. Model Correspondences (a) Viewpoints and (b) Refinement

(a) Viewpoint Correspondence

(b) Refinement

Package P1
System from viewpoint 1

Package P2
System from viewpoint 2

Package P6
Refinement

Package P4
Abstraction
 Model Driven Architecture ormsc/2001-07-01 17

July 9, 2001 Draft

A-

cy.
ents.

ng

sing
2.3.7 Traceability

The relationships between elements of the PIM expressed using UML and CORB
specific UML models can only be partly specified in UML 1.4. Figure 14 illustrates
loosely that the AccountInstanceManager CORBA interface is a refinement, at a
different level of abstraction, of the number attribute in the PIM that constitutes
Account’s unique identifier. <<refine>> is a standard UML stereotype of dependen
Note that UML namespaces are used to distinguish between the two Account elem
The platform-independent Account class is contained in a namespace called
PlatformIndependent. The desired namespace separation can be achieved by putti
the two models in separate UML Packages, as suggested in Figure 13 on page 17

Figure 14. Tracing Between Elements of the Models

An example of the refinement relationship across levels of abstraction is shown u
plain notes to describe the mapping in Figure 15 on page 199.

9.It is generally recognized that UML’s facilities for relating models at different levels of
abstraction are rudimentary and need expansion. UML’s features do not adequately sup-
port powerful zoom-in and zoom-out capabilities. The UML 2.0 RFPs call for facilities
that address this gap, to enable a more complete definition of the refinement relationship
across levels of abstraction, such as the one shown in Figure 15 on page 19.

<<CORBAInterface>>
CORBASpecific::Account

number : short
balance : float

<<CORBAInterface>>
AccountInstanceManager

create_account(in number : unsigned long : Account
find_account(in number : unsigned long) :) Account

1 *

+manager

<<BusinessEntity>>
PlatformIndependent::Account

<<UniqueId>> number : Integer
balance :: Float

<<refine>>
18 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

r
f the

ation

plete
oss
r
 be
Figure 15. Refinement Relation between PIM and PSM levels of Abstraction

The above set of examples highlights the value of the MDA. The architect/modele
focuses on creating the platform independent architectural and business model o
application. The middleware/e-services designer uses UML profile for CORBA to
model the platform specific aspects of the system so that CORBA interface gener
can be automated. The programmer then uses the UML model as well as the IDL
interfaces to augment whatever generated code exists with additional code to com
the value added business logic for the service. The explicit mapping relations acr
models are used to enable potential automation of PSM generations as well as fo
easier integration. All these artifacts are traced and versioned. This allows MDA to
used by systems administrators, architects, designers as well as developers

PlatformIndependent

<<BusinessEntity>>
PlatformIndependent::Account

<<UniqueId>> number : integer
balance : float

refinement

PlatformIndependent

new Account(n)

<<UniqueId>> number

select an account based on
number(n)

mapping to CORBASpecific

AccountInstanceManager::create_account(n)
pre/post of create_account, since
they guarantee keeping account numbers
unique, and there is no other way to create
accounts

AccountInnstanceManager::find_account(n)

CORBASpecific
AccountInstanceManager CORBASpecific::Account

create_account(in number : unsigned long): Account
find_account(in number long: unsigned long): Account

+manager
number : short
balance : float
 Model Driven Architecture ormsc/2001-07-01 19

July 9, 2001 Draft

all

ling
les.

ial

f

tion

3 OMG Standards and the MDA

3.1 Overview

Figure 16 illustrates how OMG standards fit together in MDA. It provides an over
framework within which the roles of various OMG and other standards can be
uniquely identified. This section looks at the overall picture in Figure 16. The
following sections look at some issues related to specific OMG standards.

Figure 16. OMG's Model Driven Architecture

3.1.1 The Core

The core of the architecture, at the center of the figure, is based on OMG’s mode
standards: UML, the MOF and CWM. The core comprises a number of UML profi
One will represent Enterprise Computing with its component structure and
transactional interaction; another will represent Real-Time computing with its spec
needs for resource control; more will be added to represent other specialized
environments but the total number will be small. Each UML profile represents the
common features of all of the middleware platforms appropriate for its category o
computing, but will be independent of any specific platform.

Whether your ultimate target is CCM, EJB, MTS, or some other component or
transaction-based platform, the first step when constructing an MDA-based applica
will be to create a PIM of the application expressed in UML using the appropriate
UML profile. Platform specialists will transform this application model into one
20 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

 will
e

s

at
lity

s of
tion

al

hnical

t, or
ist
s,

rily
 best

ixed

cular
the

utside

ents
le in
ur

led
targeted to a specific platform such as CCM, EJB, or COM+. Standard mappings
allow tools to automate some of the transformation. In Figure 16 on page 20, thes
target platforms occupy the thin ring surrounding the core.

Among these target platforms, CORBA occupies a special role in OMG’s standard
activities as the target platform of choice when an implementation language
independent target platform with the interoperability implied by the use of IIOP is
required. The other target platforms are admissible, but with the understanding th
additional work would be involved to obtain the level of out of the box interoperabi
that one gets when CORBA is used as the target platform.

The PSM faithfully represents both the business and technical run-time semantic
the application. It’s still a UML model, but is expressed (because of the transforma
step) in a dialect (i.e. a profile) of UML that precisely mirrors technical run-time
elements of the target platform. The semantics of the platform-independent origin
model are carried through into the platform-specific model.

Generally, standards in the Core are developed and managed by the Platform Tec
Committee (PTC) at the OMG.

3.1.2 Pervasive Services

All applications, independent of their context (e.g. for the enterprise or the Interne
for embedded computing) rely on some or all of a set of essential services. The l
varies somewhat depending on the source but typically includes Directory service
Event handling, Persistence, Transactions, and Security.

When these services are defined and built on a particular platform, they necessa
take on characteristics that restrict them to that platform, or ensure that they work
there. To avoid this, OMG will define such services as pervasive services at the PIM
level in UML. Only after the features and architecture of a pervasive service are f
will platform-specific definitions be generated for all of the middleware platforms
supported by the MDA.

At the abstraction level of a platform-independent business component model,
pervasive services are visible only at a very high level (similar to the view the
component developer has in CCM or EJB). When the model is mapped to a parti
platform, code will be generated (or dynamically invoked) that makes the calls to
native services of those platforms.

In Figure 16 on page 20, the Pervasive Services are shown as a ring around the o
of the diagram to emphasize that they’re available to all applications, in all
environments. True integration requires a common model for directory services, ev
and signals, and security. By extending them to a generalized model, implementab
the different environments and easily integrated, the MDA becomes the basis of o
goal of universal integration: the global information appliance. In Figure 16, Pervasive
services specify services that an infrastructure component offers to other assemb
components.
 Model Driven Architecture ormsc/2001-07-01 21

July 9, 2001 Draft

e
e

C.

 a
tion

del
d

del
heir
ition
BA

ing
urce
BA,

ing
ons
al
l not

ir
ble

s or
hese
he
her
unts
c
e

 all
0
Pervasive Services standardized at the OMG fall in the grey area where some ar
standardized through the PTC and some through the Domain Technical Committe
(DTC).

3.1.3 OMG Domain Specifications

A sizeable percentage of OMG activity is focused on standardizing services and
facilities in specific vertical markets through Domain Task Forces (DTFs) of the DT
Initially these specifications consisted of interfaces written in OMG IDL with
accompanying semantic description in English text. Standardizing components at
platform level, in terms of standards such as CORBA, is certainly a viable contribu
to solving the integration and interoperability problem, but the MDA offers much
more.

A well-conceived service or facility is always based on an underlying semantic mo
that is independent of the target platform. However, the model may not be distille
explicitly, and this is the case with OMGís domain specifications because the mo
for virtually every one is not expressed separately from its IDL interfaces. Since t
models are hidden, these services and facilities have received neither the recogn
nor the widespread implementation and use that they deserve outside of the COR
environment, especially considering the quality of their underlying models. Extend
these implied models outside of CORBA just makes sense. The Healthcare Reso
Access Decision Facility, already implemented in Java and EJB in addition to COR
is an example. There are more.

Thus, in order to maximize the utility and impact of OMG domain facility
specifications in the MDA, they will be in the form of normative PIMs expressed us
UML, augmented by normative PSMs expressed using UML and interface definiti
for at least one target platform. The common basis in the MDA will promote parti
generation of implementation code as well, but implementation code of course wil
be standardized.

The DTFs of the DTC produce standard frameworks for standard functions in the
application space. For example, a Finance DTF standard for an accounts receiva
facility might include a PIM expressed using UML, a CORBA-specific UML model
and IDL interfaces and a Java-specific UML model and Java interfaces. XML DTD
schema generated via XMI-based mapping rules could be included as well. All of t
artifacts would be normative. Such a standard would have broad impact, in that t
platform-independent model would be useful even in middleware environments ot
than those targeted by the platform-specific parts of the specification. Since acco
receivable is an Enterprise Computing application, the normative, platform-specifi
artifacts would be derived at least partially via standard mappings of the Enterpris
Computing profile to the platforms.

Today OMG has ten DTFs with several more “in the chute.” Rather than show them
in a static diagram, only a representative sample is shown in Figure 16 on page 2
where they appear as rays emanating from the center.
22 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

ime
ll. By
A

ge of
ation.
 and

ing
ures.

re

 as
eds
ite
d for
ed

t
e
nt
the

sired
t and
s as

3.1.4 Transparencies and Qualities of Service

Environments with specific hardware and software attributes – Scalability, Real-T
operation, Fault Tolerance, or Embedded characteristics – may be modeled as we
defining UML representations for these environments or, OMG will extend the MD
to support and integrate applications with these desirable characteristics.

3.2 System Lifecycle - MOF, UML, CWM and XMI

IT systems have historically been developed, managed and integrated using a ran
methodologies, tools and middleware and there appears to be no end to this innov
What we have seen in the last few years, especially as a result of efforts at OMG
W3C is a gradual move to more complete semantic models as well as data
representation interchange standards. OMG contributions include CORBA, UML,
XMI, MOF and CWM. W3C contributions include XML, XML Schema, and the
ongoing work of the XML-P working group. These technologies can be used to
integrate more completely the value chain (or life cycle) when it comes to develop
and deploying component based applications for various target software architect

The life cycle of an application can vary dramatically depending on whether we a
building a new application from scratch or just surgically adding a wrapper to an
existing application. The cost of enhancement and maintenance of an application
well as the cost of integrating new applications with existing applications far exce
the cost of initial development. In addition the application life cycle itself can be qu
complex, involving several vendors in each of the life cycle phases. Hence the nee
information interchange and interoperability between tools and middleware provid
by different vendors (a very common situation in enterprises today) is critical.

The MDA supports many of the commonly used steps in model driven componen
based development and deployment. A key aspect of MDA is that it addresses th
complete life cycle covering analysis and design, programming (testing, compone
build or component assembly) and deployment and management. An example is
way in which UML, XMI, MOF and CWM affect the interchange of information
between tools and applications.

The MDA core is based on OMG technologies (MOF, UML, CWM). These
technologies are used to describe PIMs. A PIM can be refined n-times until the de
system description level is obtained. Then, the infrastructure is taken into accoun
the PIM is transformed into a PSM. Then, again, PSMs are refined as many time
needed. Figure 17 on page 24, presents the development lifecycle of the system,
emphasizing the models used and the way they are typically refined.
 Model Driven Architecture ormsc/2001-07-01 23

July 9, 2001 Draft

ts,
 of

L is
tured
can

s and
n

 the
Figure 17. System Lifecycle and the MDA Approach

3.2.1 UML (Unified Modeling Language)

UML addresses the modeling of architecture, objects, interactions between objec
data modeling aspects of the application life cycle, as well as the design aspects
component based development including construction and assembly. Note that UM
powerful enough to be used to represent artifacts of legacy systems. Artifacts cap
in UML models (in terms of Classes, Interfaces, UseCases, Activity Graphs etc.)
be easily exported to other tools in the life cycle chain using XMI.

A number of UML profiles (for CORBA, EJB, EDOC etc.) are at various stages of
standardization (UML profile for CORBA is adopted). These are critical links that
bridge the UML community (model based design and analysis) to the developer
community (Java, VB, C++ developers), middleware community (CORBA, EJB,
SOAP developers) etc. Additional profiles focused on systems and application
management are needed

3.2.2 XMI (XML Metadata Interchange)

XMI is a standard interchange mechanism used between various tools, repositorie
middleware. XMI can also be used to automatically produce XML DTDs (and soo
XML Schemas) from UML and MOF models, providing an XML serialization
mechanism for these artifacts. XMI has been used to render UML artifacts (using

PIM / PSM
Core Languages

PSM to PSM
Mappings

Software
Development

Lifecycle

PIM to PIM
Mappings

PIM to PSM
Mappings
24 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

),
es

he

s
ta

els
d are

ng,
f the
 an

to
sing
le,

her
d to
fied

on a
e

e
UML XMI DTD), data warehouse and database artifacts (using the CWM XMI DTD
CORBA interface definitions (using the IDL DTD), and Java interfaces and Class
(using a Java DTD).

XMI, which marries the world of modeling (UML), metadata (MOF and XML) and
middleware (UML profiles for Java, EJB, IDL, EDOC etc.) plays a pivotal role in t
OMG’s use of XML at the core of the MDA. In essence XMI adds Modeling and
Architecture to the world of XML.

3.2.3 MOF (Meta Object Facility)

MOF provides the standard modeling and interchange constructs that are used in
MDA. Other standard OMG models, including UML and CWM, are defined in term
of MOF constructs. This common foundation provides the basis for model/metada
interchange and interoperability, and is the mechanism through which models are
analyzed in XMI. MOF also defines programmatic interfaces for manipulating mod
and their instances spanning the application lifecycle.These are defined in IDL an
being extended to Java.

3.2.4 CWM (Common Warehouse Metamodel)

CWM is the OMG data warehouse standard. It covers the full life cycle of designi
building and managing data warehouse applications and supports management o
life cycle. It is probably the best example to date of applying the MDA paradigm to
application area.

Historically, the integration between the development tools and the deployment in
the middleware framework, has been weak. This is now beginning to change by u
key elements of the MDA – specific models and XML DTDs that span the life cyc
and profiles that provide mappings between the models used in various life cycle
phases.

3.3 Implementation Language Independent Models and IDL

A set of IDL modules containing specifications of IDL interfaces, valuetypes and ot
datatypes is a declarative syntactic model of a system. Such a model can be use
reason about the validity or lack thereof of relationships among the entities speci
using the rules of relationship among IDL declared entities like containment,
inheritance etc. An IDL specification is an object model that can be implemented
CORBA platform that will implicitly verify the syntactic validity of any attempt to us
any part of the system.

However, such a specification does not contain much formal information about th
meaning of the operations of the interfaces or of the elements of the datatypes
declared, nor about the constraints that apply to them. In traditional CORBA
specifications such information has been included in a normative but informal
description in English.
 Model Driven Architecture ormsc/2001-07-01 25

July 9, 2001 Draft

ess
f the
ts

xtent
f

t
 has

t
e to
e

s,
ld be

.e.

ge

n

ts
tic
 has

ven

ate
ans

a
. A

In this approach, an IDL compiler can be used to statically verify syntactic correctn
of the model. An ORB can verify syntactic correctness of attempts to use parts o
system dynamically. However, there is no automatic way of verifying the constrain
and functionality that appears in the specifications in informal descriptions

IDL was not designed to express a rich set of relationships among entities. The
description of relationships between different parts of a system is also to a large e
informal, and hence prone to multiple interpretations. Traditionally, descriptions o
relationships among CORBA Services, and indeed among different artifacts that
constitute a CORBA service, appeared in the form of informal text. In more recen
specifications (e.g. POA), the use of UML to more completely describe the model
brought additional rigor to the specifications.

3.3.1 Platform and Language Environment Independence of IDL Specified
Models

IDL itself is not tied to any specific language environment or platform. This is wha
made it possible for ISO to adopt IDL as a standard without any specific referenc
CORBA. Indeed there are many systems in this world which use IDL to specify th
syntactic model of the system but do not use CORBA as the underlying platform.
While OMG has not standardized any such usage of IDL with alternative platform
there are broadly deployed instances in the industry of such use. However, it shou
noted that in spite of being platform and language environment independent, IDL
specified models are restricted to expressing only the syntax of the interactions, i
operation signatures.

OMG has chosen to use IDL together with the CORBA platform (ORB and langua
mappings) as a reasonable package of facilities to standardize. This facilitates
algorithmic construction of skeletons of portable components of the system for a
specific language environment, from language independent specifications, using a
IDL compiler. The big win from this is portability of specifications from one language
environment to another, as well as portability of implementations among different
instances of the same language environment.

Additionally, given specifications of the exact syntax of interaction between objec
that constitute the system, it is also possible to automatically generate the syntac
form that is carried on a wire that connects the two communicating objects. OMG
standardized on GIOP/IIOP as the standard means of conveying communication
between IDL declared objects deployed on a CORBA platform. Again, IDL, and e
the CORBA platform, does not preclude use of other means of communication
between objects. Indeed, it is quite possible for two CORBA objects to communic
with each other using DCOM or SOAP on the wire. But the adoption of a single me
of interoperation ensures interoperability of implementations.

3.3.2 Extensions to IDL to Capture Additional Information

Various attempts have been made to extend IDL to capture richer structural and
behavioral information and to automatically generate implementation artifacts for
given platform that enforces the constraints as specified in the richer specification
recent example of this is the Components extension of IDL together with the XML
26 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

erms

tions,

 two
y one

te

,
 an
truct

nd

s
nd
ef:

t a
e is
s and
ow
ate

BA

ain
as
RBA

er if
n. It
n to
aking
based deployment descriptors, which facilitates specification of entire systems in t
of its constituent components, their interactions and deployment characteristics.
However, it should be noted, that all such extensions so far have been point solu
without paying much attention to a general model for specifying such extensions.

A model defined in the UML profile for CORBA (see Figure 11 on page 16and
Figure 12 on page 17) provides an alternative representation of an IDL model. The
models are different representations of the same system. In fact, there is precisel
IDL representation that can be derived from a model represented using the UML
profile for CORBA. The UML model may, however, provide additional information
(such as cardinality) that cannot be represented in an IDL model today. Appropria
extensions to IDL, that allow representation of these additional relevant concepts
would make it possible to map a model expressed in the CORBA profile of UML to
equivalent IDL model in a reversible fashion. That is, one would be able to recons
the corresponding UML from the equivalent IDL, without loss of information. The
ability to “round-trip” the transformation in this way would allow designers and
architects to work in the technology that they are comfortable with (UML or IDL) a
algorithmically generate the alternative representation for the specification.

3.4 CORBA, CORBA Services and GIOP

The OMG standard platform consists of the specifications commonly referred to a
CORBA, CORBA services, and GIOP/IIOP. A more complete overview of these a
the underlying Object Management Architecture can be found in the document [R
Discussion of the OMA formal/00-06-04?]

3.4.1 Standard CORBA Platform and Bridging to Other Platforms

The general philosophy behind the CORBA platform standards has been to adop
single set of standards within a broader framework that allows alternatives if ther
such a need. The standard interoperability framework recognizes such possibilitie
explicitly defines interoperability domains in which different standards apply, and h
bridges can be specified to enable objects in different such domains to communic
with each other, thus making it possible to construct systems that span multiple
domains.

This framework has been successfully used to specify bridges between the COR
platform with GIOP/IIOP based communication and the COM/DCOM platform and
communication domain in an existing OMG standard. More recently an inter-dom
bridge between the CORBA Component Model and the EJB Component Model h
also been adopted as a standard. This shows the tremendous versatility of the CO
and associated interoperability framework.

3.4.2 Portability and Bridging for Domain Specific Facilities

The problem of bridging from one platform to another becomes considerably simpl
the two platforms in question share a common model at a higher level of abstractio
is fortunate that most broadly deployed distributed computing environments happe
share such a common model, although never formally expressed as such, thus m
construction of bridges among them feasible.
 Model Driven Architecture ormsc/2001-07-01 27

July 9, 2001 Draft

ame

tion,
d IDL
el is

tions

ning

hus

d of
ed
m

ways
a

for

l

file
s.

ard
MG.

o

-

As the basic CORBA platform and associated CORBA services specifications bec
rich enough to support the building of domain specific facilities the need for
expressing the underlying model in a formal way, at an appropriate level of abstrac
has been felt more acutely. This is somewhat analogous to the need that motivate
based specifications, but at a higher level of abstraction. A formally specified mod
useful because:

• It facilitates creation of compatible platform specific models/specifications
corresponding to the same platform-independent model and hence implementa
that are easier to bridge together.

• It provides a common reference model and vocabulary with unambiguous mea
thus reducing the chances of miscommunication among system designers and
builders.

• It facilitates standardization of more precisely specified designs and patterns, t
allowing for portability of design, and makes it easier to support interoperability
among different realizations of the same design on different platforms.

Thus, given the experience gained working on CORBA systems specifications an
bridges to other similar platforms, it is a natural step for OMG to adopt standardiz
means of expressing richer formal models at appropriate levels of abstraction, fro
multiple viewpoints.

3.5 Standards Development

The OMG’s UML Profile for EDOC RFP process currently underway will define
standard stereotypes for platform-independent models that will provide standard
to use UML to express the structure, behavior and constraints of components in
platform-independent fashion. It will contain proof of concept mappings to the
CORBA Component Model and to EJB. A follow-on RFP is expected that will call
standardization of these mappings10.

The EDOC profile will not be entirely applicable to all domains. For example, rea
time applications are likely to require a different profile for platform-independent
modeling with their own mappings to platforms.

The Sun Microsystems Java Community Process is currently defining a UML Pro
for EJB (JSR #26) to support the declarative specification of EJB-specific solution
This profile can be considered a peer of the UML Profile for CORBA in that it
supports platform-specific modeling. Several members of the OMG Architecture Bo
are members of the expert group defining the profile as are others active in the O

10. The EDOC profile also addresses business process component modeling and is likely t
be integrated sooner or later with another standard in progress, the UML Profile for Event
Driven Architectures in EAI. When these standards are finalized we may end up with
more than one level of platform-independent model so that a platform-independent busi-
ness process model could be mapped either to an event-based EAI model or to a more
standard component model, where the EAI and component models are still platform-inde
pendent.
28 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

y.

ML

BA

re,
ced
rd

tible
ut

lients.

e
the
f the
s

tral

ent,

e
The MOF-IDL mapping defines an algorithm for transforming any arbitrary MOF-
compliant metamodel to a set of IDL interfaces. The generated IDL defines the
interfaces for CORBA objects that can represent models in a distributed repositor

The IDL generated from the CWM defines the interfaces for CORBA objects
representing specific data models in a repository. The IDL generated from the U
defines the interfaces for CORBA objects representing specific UML models in a
repository.

Similarly, the IDL generated from the IR metamodel defines the interfaces for COR
objects representing specific CORBA object models in a repository.

It is generally agreed that the MOF-IDL mapping is in need of upgrading11.
Realistically we will probably have to accept the fact that for the foreseeable futu
the automatically generated transformation from PIM to PSM will have to be enhan
by humans. As we gain more experience we will be able to define various standa
patterns and allow them to be selected in some way.

There are additional issues regarding evolution of interfaces in a backward compa
interoperable fashion. An interface that is evolved in a UML or MOF model witho
consideration for backwards compatibility will most likely not result in a newer
version of the interface that is backward compatible with the older version when
deployed in a given platform. There may need to be additional enhancements to
modeling standards that allow specification of platform specific restrictions to the
ways in which interfaces can be evolved, so they continue to be usable by older c

3.6 Conformance Testing

To support this effort, the OMG must also concentrate extra effort on conformanc
testing and certification of products (branding). While OMG has been involved in
past with various testing & branding efforts for its standards, the expanded role o
OMG must be built on rock-solid testing, certification and branding. In many case
these efforts will depend on strong relationships with outside organizations with
relevant expertise. Focusing on this problem is critical to the success of OMG’s
expanded role.

4 Conclusion

MDA is OMG's next step in solving integration problems through open, vendor-neu
interoperability specifications. MDA is an evolution of the OMA that addresses
integration and interoperability spanning the life cycle of a system from business
modeling and design, to component construction, assembly, integration, deploym

11.The problem is that the generated interfaces are not efficient in distributed systems.
Firstly, the mapping predates CORBA valuetypes and thus does not make use of them.
Secondly, a class with N attributes is always mapped to a CORBA interface with N sepa-
rate getter/setter operations. In a distributed system one would want to group attributes
based upon use cases, cache attribute values, or implement other optimizations to reduc
the number of distributed calls.
 Model Driven Architecture ormsc/2001-07-01 29

July 9, 2001 Draft

dards
t of

lity
cts

their
odels
ity
f the

erms

that
he
l of
il.

r of

(its
hat
d
management and evolution. It is built upon the experience gained in creating stan
for implementation language independent models in CORBA and the developmen
the IDL, UML, MOF, CWM and XMI standards.

The MDA defines an architecture for structuring models that effectively separates
concerns relevant for integration, interoperability, and portability. It exploits the abi
to “zoom” in and out of any model of a system, exposing or eliding details of obje
and interactions, with an architecture that uniformly separates specifications from
realizations. It uses these to enable the standardization of platform-independent m
which can then be realized in implementation on multiple platforms with traceabil
between the platform independent models and the platform specific realizations o
models in implemented form.

5 Glossary

This glossary is included for the convenience of the reader. It explains how these t
are used in this document.

Abstraction: An abstraction is a description of something that omits some details
are not relevant to the purpose of the abstraction; the converse of “refinement”. T
notion of abstraction is used in MDA in the sense defined in the Reference Mode
Open Distributed Processing (RM-ODP) Part 2: the suppression of irrelevant deta

Execution Environment: An execution environment depends on hardware and
software infrastructure and is realized by one or several platforms.

Infrastructure: An infrastructure (also called computing infrastructure) is a set of
software pieces or hardware pieces assumed to be already present by some
stakeholders when he/she develops a software artifact.

Mapping: Set of rules and techniques used to modify one model in order to get
another model. Mapping are used for PIM to PIM, PIM to PSM, PSM to PSM and
PSM to PIM transformations.

Model: A model is a representation of part of the function, structure and/or behavio
a system.

Platform Independent Models (PIM): The PIM provide formal specifications of the
structure and function of the system that abstracts away technical details.

Platform Specific Models (PSM): A PSM is expressed in terms of the specification
model of the target platform. PSM have to use the platform concepts of exception
mechanisms, parameter types (including platform-specific rules about objects
references, value types, semantics of call by value, etc.), and component model.

Platform: A platform is a software infrastructure implemented with a specific
technology (Unix platform, CORBA platform, Windows platform) on specified
hardware technology.

Refinement: A refinement is a more detailed description that conforms to another
abstraction). Everything said about the abstraction still holds, perhaps in a somew
different form, in the refinement. In MDA, we would like to permit that more detaile
descriptions are built in a systematic way from abstract ones.
30 Model Driven Architecture ormsc/2001-07-01

July 9, 2001 Draft

f
view
at

 to
 the
m

s
P

tural
Software Infrastructure : A software infrastructure is a computing infrastructure
comprising software artifact with tools and guidelines to use them.

View: A representation of a whole system from the perspective of a related set o
concerns [IEEE STD 1471-2000]. Views are not necessarily orthogonal, but each
generally contains specific information. In MDA, a view is a collection of models th
represent one aspect of an entire system. A view applies to only one system, not
generalizations across many systems. The IEEE concept of "view" is equivalent to
RM-ODP concept of "viewpoint specification", which is the specification of a syste
from a given viewpoint.

Viewpoint: A specification of the conventions for constructing and using a view. A
pattern or template from which to develop individual views by establishing the
purposes and audience for a view and the techniques for its creation and analysi
[IEEE STD 1471-2000]. The IEEE concept of "viewpoint" is eqivalent to the RM-OD
concept, which is "a form of abstraction achieved using a selected set of architec
concepts and structuring rules, in order to focus on particular concerns within a
system”.
 Model Driven Architecture ormsc/2001-07-01 31

July 9, 2001 Draft

	1 Why the MDA
	1.1 MDA and the Mission of the Object Management Group
	1.2 The OMG’s Specification History
	1.3 The Emergence of New Kinds of Standards
	1.4 The Evolution to Model Driven Architecture
	1.5 How the MDA Integrates Standards

	2 The Model Driven Architecture
	2.1 Introduction
	2.2 Basic concepts
	2.2.1 Models
	2.2.2 Abstraction, Refinement and Viewpoint
	2.2.3 “Zooming” in and out
	2.2.4 Platform and Implementation Language Environment

	2.3 Models in the MDA
	2.3.1 Architecture for MDA Models
	2.3.2 Platform Independent Models in UML
	2.3.3 Platform Specific Models in UML
	2.3.4 Mappings of Models
	2.3.5 Platform Independent and Platform Specific UML Models
	2.3.6 Packages and Viewpoints
	2.3.7 Traceability

	3 OMG Standards and the MDA
	3.1 Overview
	3.1.1 The Core
	3.1.2 Pervasive Services
	3.1.3 OMG Domain Specifications
	3.1.4 Transparencies and Qualities of Service

	3.2 System Lifecycle - MOF, UML, CWM and XMI
	3.2.1 UML (Unified Modeling Language)
	3.2.2 XMI (XML Metadata Interchange)
	3.2.3 MOF (Meta Object Facility)
	3.2.4 CWM (Common Warehouse Metamodel)

	3.3 Implementation Language Independent Models and IDL
	3.3.1 Platform and Language Environment Independence of IDL Specified Models
	3.3.2 Extensions to IDL to Capture Additional Information

	3.4 CORBA, CORBA Services and GIOP
	3.4.1 Standard CORBA Platform and Bridging to Other Platforms
	3.4.2 Portability and Bridging for Domain Specific Facilities

	3.5 Standards Development
	3.6 Conformance Testing

	4 Conclusion
	5 Glossary

