
Why Use Cases Are Not "Functions"

by Kurt Bittner
General Manager
Rational Unified Process Business Unit

Most people go astray right from the start with use cases. Perhaps it is the 
similarity between use case diagrams and dataflow diagrams which leads 
people to define use cases that are simply functions or menu items. 
Whatever the reason may be, it is notably the most prevalent mistake that 
novices make. 

Figure 1: The wrong way: use cases as menu options 
or functions

What's wrong with 
this picture? In 
simplest terms, I like 
to regard a use case 
as a story about 
some way of using a 
system to do 
something useful. 
Using this definition, 
are all of these "use 
cases" independently 
useful?

The answer, of 
course, is no. In this 
example, the use 
case denotes all 
things that the 
system needs to do, 
but it also represents 
the one single thing 
that the customer 
wants to do on the 
system: place an 
order. All of the 
remaining elements are alternate flows in this one use case. They are 
steps that may be taken when placing an order. Where there is only one 
useful thing being done, there should only be one use case. Figure 1 is an 
example of functional decomposition, or (as one colleague puts it) an 
example of the "circled wagons" formation -- one actor at the center of a 

 

jprince

jprince
http://www.therationaledge.com/content/dec_00/t_ucnotfunctions.html

jprince
Copyright Rational Software 2001 



 

circle of use cases.

This problem is a common one. Why do people fall into this trap? We have 
an intrinsic need for order, and where none exists we will impose it if 
necessary. In the case of functional decomposition, we have a natural 
tendency to try to break the problem down into smaller and smaller 
chunks. There is a naive belief that by breaking the use cases into smaller 
and smaller units, we have simplified the problem. This perception is dead 
wrong; when we decompose the use cases, we actually compound the 
problem. 

Here's Why

The purpose of a use case is to describe how someone or some thing will 
use the system to do something that is useful to them. It describes what 
the system does at a conceptual level so that we can understand enough 
about the system to decide if the system will do the right thing or not. It 
enables us to form a conceptual model of the system. 

Again, refer back to Figure 1. Now ask yourself, would I want to use this 
system to inquire into the status of an order if I had never placed an 
order? It's not very likely. Or would I need to change an order if I had 
never placed an order? No, probably not. Individually, these things are 
useful to me only if I have placed an order; all of them are necessary, 
however, to the system's ability to allow me to place an order.

Decomposing the system into smaller use cases actually obscures the real 
purpose of the system; at the extreme, we end up with lots of isolated odd 
bits of behavior. As a result, we can't tell what the system does. It's just 
like looking at a car that's been taken apart -- maybe you can tell that it's 
a car, and you know that the parts must be useful somehow, but you 
really can't tell how they fit together.

When working with use cases, remember that use cases are a way to think 
of the overall system and organize it into manageable chunks of 
functionality -- chunks that do something useful. To get the right set of 
use cases, ask yourself this question: "What are the actors really trying to 
do with this system?"

In case you're wondering what the improved version of Figure 1 would 
look like, the figure below presents the improved version:

Figure 2: A better, simpler approach: combine 
functions to reflect the real value to the actor

This one use case 
encompasses all the 
"functions" that the earlier 
diagram split out as use 
cases. You may ask why 
this is better. The answer is 
simple. It focuses on the 
value that the customer 
wants from the system, not 
on how we subdivide and 
structure the functionality 



within the system. If you split all these functions into separate use cases, 
you force your customer (the one paying for the system) to reassemble 
the decomposed use cases into something meaningful to them in order to 
understand whether the system described is what they want (and are 
willing to pay for).

Focus on Value

Lots of small use cases are a common problem, especially among teams 
with a strong background in (or covert sympathies for) functional 
decomposition. Their use case names read like a list of functions that the 
system will perform: "Enter Order," "Review Order," "Cancel Order," 
"Fulfill Order." These may not sound so bad at first, but there are more. 
For even a small order entry system, use case lists can run well into the 
hundreds. If one stays on this path, they are soon drowning in a sea of 
use cases, especially if it is a "really big" system. In this case, you would 
end up with many hundreds, maybe thousands, of use cases.

So What's So Wrong With This?

The value of these use cases would be lost. A use case's sole purpose is to 
result in some sort of value to the actor, and at one level being able to 
enter an order is something of value. But if the order could never be 
fulfilled, would it still have value? Probably not. 

Or what about entering an order and modifying the order, or perhaps 
canceling the order -- all of these things are related to the real thing a 
customer wants to do, which is to receive the goods being ordered. These 
actions are also all necessary to what the company wants, which is to 
receive payment for the goods shipped.

Another problem with a set of functions that appear to be disconnected, 
without any apparent relationship, is that they result in a hard-to-use 
system. Too many systems are like this -- they are just jumbles of 
features. Remember, use cases help us focus on what is really important -- 
the things that have real value -- and enable us to define a system around 
those elements. Use cases do not present a functionally decomposed 
picture of the system.

Example 

Consider an e-commerce system that you have used on the 
Web. When you go to the site, your goal may be to find 
information about products, select products to buy, and 
arrange payment and shipping terms for those products. In the 
course of doing those things, you may change your mind, enter 
incorrect information and have to change it, change your 
mailing or shipping address, and a number of other things. If 
the site does not allow you to find products and order them in 
an appealing way, you probably won't even complete your 
order, let alone return to the site again. 



When building systems, always refer back to the core definition of a use 
case: a story about some way of using the system to do something useful. 
If you can implement this definition to display the value that users expect 
to obtain from the system, and then create use cases that reflect these 
values, your system will better meet user expectations.

For more information on the products or services discussed in this 
article, please click here and follow the instructions provided. 
Thank you! 

Copyright Rational Software 2000 | Privacy/Legal Information




